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Automated support systems may be useful tools for aiding situation assessment in complex environments 
such as the military battlefield. These environments are marked by large amounts of information which 
often must be weighted and integrated into a meaningful judgment or assessment. The present research 
examines the effects of attention cueing on information integration tasks in static battlefield situations. 
Sixteen participants completed a resource allocation task for 56 battlefield scenarios (based on perceived 
threats). For half the trials, an automated system guided their attention to high-threat units. On 2 trials a 
memory probe was administered to assess the depth of processing of information, and on the final trial an 
automation failure was presented. Results demonstrated an overall allocation performance advantage for 
automation but poorer recall for automation-enhanced units. Half of the participants failed to attend to the 
system failure. Those participants who detected the failure were inferred to have processed the cues more 
deeply on the memory trials. The costs and benefits of automated cueing are discussed. 
 
 

 Battlefield commanders’ situation awareness often 
involves the integration of large amounts of information from 
a number of sources in order to form a situation assessment 
(Graham & Matthews, 1999). This weighted information 
includes the location and strength of other friendly and 
opposing forces, the surrounding terrain, and a large number 
of other METT-T (Mission, Enemy, Terrain, Troops, and 
Time) operational factors. Previous work has shown that 
people do not always integrate multiple pieces of information 
optimally (when making a judgment or decision), especially 
under conditions of high workload, time pressure, or when the 
information is unreliable in nature, conditions which are 
characteristic of the battlefield environment.  
 Employing the taxonomy proposed by Parasuraman, et al. 
(2000), automation can be provided to assist the battlefield 
commander in this task at various stages of information 
processing, for example in guiding attention to the most 
valuable cues (stage 1), in integrating cues and diagnosing 
what automation infers to be the most likely state of intent 
(stage 2), or in recommending the most appropriate course of 
action (stage 3). However limitations of automatic diagnosis 
and choice have been found in operator over-reliance upon 
imperfect automation (Parasuraman & Riley, 1997; Metzger 
and Parasuraman, 2001, Mosier, et al., 1998). Thus we focus 
our interest on automation at the first stage, to assist the 
operator by highlighting the most relevant cues for situation 
awareness (SA) or assessment. Unlike automated situation 
assessment and choice, which allow the operator to perform 
without necessarily attending to the cues, stage 1 automation 
requires the operator to consider at least some of the cues upon 
which the diagnosis is based. Research on target cueing (a 
form of attention guidance) has reliably demonstrated the 
benefits of automation. Nevertheless such highlighting or 
attention cueing has been found to produce unwanted effects 
on attentional tunneling (e.g., Yeh, et al., 1999; Yeh and 
Wickens, 2001, in press; Metzger & Parsuraman, 2001; 
Davison & Wickens, 2001), and over-reliance. 
 While past research on automation attention guidance has 
focused on target detection tasks (e.g., Yeh, et al., 1999; 

Davison & Wickens, 2001), the current research examines 
stage one attention cueing in an information integration task 
(i.e., Endsley’s (1995) level 2 SA) where all the raw data are 
available (the cues highlight the most relevant information). 
Specifically, we assessed the effects of an automated cueing 
aid in a static battlefield map display on (a) the assessed threat 
of enemy attack from the east and west (we operationally 
measure this assessment by the participants’ subsequent 
deployment of defensive resources), (b) the depth of 
processing of raw data (for high and low relevant information, 
cued and uncued), and (c) over-reliance on imperfect 
automation (the participant’s reaction to the automation’s 
failure to cue a high relevant piece of information).  
 Participants under time pressure observed map displays 
which contained large amounts of information (regarding the 
type, location, strength, and accessibility of other military 
units, as well as the reliability of the information source). On 
some trials, the cueing aid highlighted the enemy units that 
were most relevant (i.e., had the highest information value) to 
the participant’s threat assessment and was intended to help 
the observers filter out the less relevant information (e.g., 
neutral or other friendly units). We hypothesized that the 
filtering effects of the automated aid would allow participants 
to make more optimal defensive allocations. 
       Memory probes were used on some trials to assess 
differential effects of automated cueing on the depth of 
information processing (Craik & Lockhart, 1972) for a 
particular unit (i.e., whether cueing would increase or decrease 
the memory for separate attributes of the cued target; Yeh and 
Wickens, 2001, in press). It was also predicted that the failure 
of automation to highlight a relevant cue would result in a 
high number of misses and hence an inappropriate allocation 
of resources.  
      Finally, we were interested in whether certain information 
cue types would be intrinsically given more weight in the 
threat assessment, independent of the level of automation and 
of their information value. In particular, we wished to see 
whether the abstract cue of reliability would receive less 
processing, and therefore contribute less weight to the 
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judgments than the more concrete cues of unit size, distance 
and terrain. 
Methods 
 
 Eight upper level Army ROTC students and eight non-
ROTC (graduate) students from the University of Illinois 
volunteered for this study. Participants were presented with 56 
digital battlefield scenarios based on topographical maps of 
Fort Irwin and standard military symbology for enemy, 
neutral, and friendly units (see Figure 1). These units were 
embedded within these maps and varied in size (e.g., platoon), 
type (e.g., enemy combat mechanized), location (distance and 
terrain separation from own forces), and the reliability of the 
intelligence estimate of their identity as coded by line type of 
the symbol (solid, dashed, dotted). For non-ROTC students, a 
numerical digit replaced the standard symbology for unit 
strength. The participant’s own unit was always located near 
the center of the map. 
 On each trial, participants had 20 defensive resources to 
deploy either to the east or west of their position. Participants 
were required to evaluate the integrated threat of units in the 
east versus those in the west and allocate these resources 
accordingly. Optimally, a large threat from the east would 
receive a larger proportion of these resources than would a 
lower perceived threat from the west. The relative threat of 
each unit was based on weighted evidence from multiple 
attributes of each unit (unit type and size, separation distance 
(relative to their own position), difficulty of the terrain 
between the unit and themselves, and the reliability of the 
intelligence assessment of the unit’s identity). For each trial, 
the map was displayed for up to 25 seconds.  
 Automation. On half of the trials, an automation feature 
was incorporated which guided attention to the most relevant 
(highest threat) symbols on the map by flashing them. The 
relevance of a symbol was based on its information value 
(units having higher information value were deemed to be 
more of a threat) and this information value (Barnett & 
Wickens, 1988) was based on the 5 attributes characterizing  
 

 
Figure 1. Sample battlefield scenario (colors inverted). Central symbol is 
observer’s own unit. Surrounding units are comprised of enemy, friendly and 

neutral forces. This is a simplified trial - typical scenarios had 20 other units 
on the display. 
 
each unit and was derived through a multiple regression of 
questionnaire data from six independent observers: 
 

IVunit = Xtype(90 + 4 Xsize – 5 Xdist –14 Xdiff) x R    (1) 
 

where Xsize, Xdist, and Xdiff define the unit size, distance from 
own force, and difficulty of the intervening terrain, 
respectively. R is the overall reliability of the information for 
the unit (from 0 to 1), and Xtype is the type (1 for enemy units, 
0 for neutral or friendly). It follows from this formula that 
only enemy units will be perceived as a threat, and threat 
increases as unit size increases, separation distance decreases, 
and terrain difficulty eases. Reliability is used as a moderator 
variable. Terrain difficulty was rated on a 4-point scale by a 
group of four independent observers. The automation feature 
enhanced symbols that had information values equal to or 
greater than an arbitrary figure of 30, leading to approximately 
25% of the items being highlighted on average. 
 Memory Probe. A memory probe was administered 
following two of the scenarios in order to determine the depth 
of processing of the raw data. The probe queried the size of a 
unit at a particular location in the battlefield display. One 
probe followed a non-automated trial (no enhancement), while 
another followed an automated trial (queried either an 
enhanced, high-relevance symbol or a non-enhanced, low-
relevance symbol). Responses were scored on the basis of 
accuracy and degree of confidence.  
 Failure. One scenario was presented in which the 
automation feature failed to enhance all of the relevant units. 
On this trial, the enhancement appeared normal for all of the 
units favoring attack in one direction however did not 
highlight a very important (high-relevance) unit on the 
opposite side (one which would have a significant impact on 
the allocation of resources). The purpose of this trial was to 
determine whether participants were attending to all of the raw 
data on automated trials or only the enhanced units, an 
assessment that could be made based on the pattern of 
participants’ allocation response. 
 
Results 

 
 Equation (1) was used to predict the optimal allocation 
based on the sum of the information values for the various 
units displayed on the map (comparing east versus west). 
Participant allocation responses were compared to the 
predicted values and expressed as absolute difference (error) 
scores in the analyses.  
 Overall, allocation policies were closer to the optimal 
level for trials with automation (M = 2.66) versus those 
without automation (M = 3.05; F(1, 745) = 6.3, p = .01). Non-
ROTC (graduate) students were found to have lower error 
scores (M = 2.63) than ROTC students (M = 3.0) (see Figure 
2). The Student x Display interaction was not significant (F(1, 
745) = .01, p = .93), suggesting that both groups benefited 
equally from automation, and further analysis suggested that 



 

 

the two groups responded in a qualitatively similar way to 
other manipulations.  
 
 

2
2.2
2.4
2.6
2.8

3
3.2
3.4

Automation No Automation

Display Type

A
bs

ol
ut

e 
Er

ro
r

Non ROTC
ROTC

 
 
 Response times were found to be significantly faster in 
the automation condition (M = 18.7 s) than in the no-
automation condition (M = 20.2 s).  
 Memory Probe. A main effect for unit relevance on the 
accuracy of recall for unit attributes approached significance 
(F(1, 27) = 3.46, p = .07) suggesting that participants adopted 
the appropriate strategy of processing highly important cues 
more deeply (M = 5.9) than less important ones (M = 4.2).  
 Memory recall performance for the low relevance objects 
was equal, regardless of automation condition (M = 4.2). 
Analyses of the raw scores indicated that performance for 
these units were above chance performance. Because the unit 
was not highlighted in both of these conditions, this suggests 
that the depth of processing for these cues was not hindered by 
the presence of automation for other items. This finding is not 
consistent with the findings from other research that the 
presence of cued targets detracts attention from non-cued 
objects (e.g., Yeh, et al., 1999; Yeh and Wickens, 2001, in 
press).  
 Recall for the high relevance item was slightly weaker 
with automation (M = 5.5) compared to the no automation (M 
= 6.5) condition. Performance for this high-relevant, cued 
memory probe was characterized by a bimodal distribution, 
with participants typically scoring either very high or very low 
in the automated condition. The high variance from this 
response pattern barred any significant findings, but is of 
considerable interest in its own right suggesting that some 
participants may have ignored the raw data behind the 
highlighted cue entirely, integrating only the fact of its 
highlighting, whereas others used the highlighting as a guide 
for deeper analysis of the threat that had been highlighted. 
These two strategies correspond to the effects of cueing that 
Yeh and Wickens (2001, in press) had associated with 
response bias (reduced beta) and increased sensitivity (d’), 
respectively. 
 Failure Trial. On the failure trial, roughly half of the 
participants failed to notice the high-relevance, non-enhanced 
unit (as inferred from their allocation score). We examined 
whether there was any significant relationship between 

performance on the failure trial and the bimodal pattern of 
responses on the memory probe for the high-relevance, cued 
target. A point biserial correlation between observer type 
(failure noticer, non-noticer) and performance on the memory 
probe revealed a significant relationship (rpb = .69, p < .05) 
between the two variables. Noticers were then those who had 
shown deeper processing of the data underlying the cues.  It 
was estimated that 63% of the variance in memory probe 
performance was accounted for by observer type.  
 Cue Weighting. Further analyses of the impact of the 
separate attributes (size, type, terrain, distance) in allocation 
judgments suggested that different cue types were weighted 
differentially in the allocation responses (F(3, 231) = 9.3, p < 
.001). post hoc tests revealed that unit size (M = 5.8) had 
significantly higher influence on the resource allocation  
response patterns than did reliability (M = 3.2; p = .004), 
terrain (M = 3.1; p < .001), or distance (M = 3.1; p < .001). 
This rank order of cue influence (size-reliability-
terrain/distance) that was inferred from the objective 
performance data is not entirely consistent with subjective 
self-reported importance, as measured in the post-
experimental questionnaire. Participants indicated that size 
was the most important factor (M = 4.4), followed by distance 
(M = 4.0), terrain (M = 3.9), and reliability (M = 3.2). 
 
Discussion 

 
 In the non-automated condition, performance on the 
allocation task was reasonable, suggesting that there was some 
processing of the numerous information cues in the time 
available. However overall, performance with the automated 
cueing aid was superior to unaided performance, with reduced 
departures from the optimal allocation scores in automated 
conditions. Though there were differences in performance 
across student type, the automation benefited both groups 
equally. The response times with the aid were 1.5 sec shorter 
than for the non-automated conditions suggesting that 
automation allowed the participants to make more speeded 
and accurate allocation decisions, presumably by allocating 
their attention (visual search) initially to the cued items. In 
general, this finding is consistent with previous research on 
reliable target cueing (e.g., Yeh, et al., 1999; Davison & 
Wickens, 2001), however it extends beyond simple detection 
tasks to higher-level integration tasks. 
 Previous research has shown that the presence of cued 
targets detracts attention from other uncued targets (e.g., 
Davison & Wickens, 2001; Yeh, et al., 1999; Yeh and 
Wickens, 2001, in press). This finding was not replicated in 
the present study. Recall scores for the low-relevant (uncued) 
units were equal in both the automated and non-automated 
conditions but still above chance performance, suggesting that 
the presence of automated cues did not have an adverse impact 
on processing for these units. The inconsistencies in the 
impact of automation on uncued targets may be due, in part, to 
the nature of the tasks employed. As mentioned previously, 
most research has utilized target detection tasks (level 1 SA) 
to demonstrate the tunneling of attention around cued target 
locations. The current study, however, required participants to 

 Figure 2. Absolute error by display type and student type. 



 

 

integrate multiple pieces of information (level 2 SA), which 
typically involved more than one cued target per trial and 
hence, more scanning behavior.  Furthermore, the amount of 
reduction in RT allowed by the cueing, 1.5 seconds, was 
sufficiently small to suggest that it did not eliminate inspection 
of the uncued items altogether, a conclusion also supported by 
the above chance accuracy of memory for those uncued items. 
 Recall for the attributes of the high-relevant unit exhibited 
a somewhat different pattern of results. The general (non-
significant) trend showed inferior recall in the automated 
condition compared to the baseline condition, suggesting that 
the application of automated cueing to these high importance 
targets may negatively impact the depth of processing for 
these cues. More important was the evidence of a bimodal 
response pattern in the recall scores for the cued high 
relevance units. This suggests that different observers adopted 
different strategies for interacting with the early stage 
automation. This hypothesis was further supported by the 
findings from the failure trial. Observers who had poor recall 
for the cued target may have failed to attend to the raw data 
present in the display, attending only to the highlighting. For 
example, they may have noted the presence of 2 cued targets 
in the west and 4 cued targets in the east and proceeded to 
allocate twice as many resources to the east without 
processing these cues at a deeper level. Yeh and Wickens 
(2001, in press) found a similar response bias (beta) in 
observers who believed the automated system to be highly 
reliable. In their study, participants were found to attend more 
to the information suggested by the cue rather than to the raw 
data. 
          In contrast, observers who exhibited good recall may 
have been using the cueing to direct their attention to the 
relevant features for deeper analyses. This strategy would 
suggest an increase in sensitivity to the information in the 
cued target. No differences were found to suggest a 
demographic variable which could account for the observer 
type. Are there any implications of these differing beta and d’ 
strategies in the use of automation? The former (beta) may be 
a more efficient strategy under time pressure however there 
will be costs if automation is unreliable, an issue we turn to in 
the next section. 
 Failure Trial. This catch trial exhibited some degree of 
evidence for automation induced complacency or over-
reliance. Roughly half of the participants failed to notice the 
automation failure and hence made inappropriate allocation 
responses. On all trials prior to the failure trial, the automation 
had operated reliably, consistently highlighting the most 
relevant units. Over-reliance and complacency are an 
unfortunate negative by-product of highly reliable (yet 
imperfect) automated systems (Parasuraman & Riley, 1997; 
Mosier, et al., 1998). As such, the appropriate level of human 
interaction with such systems must be clarified to ensure safe 
and efficient use of automation (Bainbridge, 1983). 
 A significant finding relating to the failure trial is the 
strong relationship between noticing the uncued high-relevant 
unit in the failure trial and scoring high on the memory probe 
for the high-relevant, cued target. This relationship lends 
further support to the notion that there are different (beta and 

d’) strategies for interacting with the automation. Some 
observers will utilize the automation to get a global sense of 
the situation and make their response on the basis of this high-
level assessment. This strategy reduces the cognitive demands 
of the integration task and, given the performance findings, 
often leads to good allocation decisions. However it is in cases 
where detailed information needs to be recalled or when 
automation is unreliable that this advantage breaks down. 
Alternatively, observers may attend to the local highlighting 
cues, inspecting the raw data underlying each in turn. 
      While the strategy just described would directly predict an 
enhanced ability to notice that a cued item was not of high 
relevance (ie., an automation cueing “false alarm”), it is 
important to realize that the automation failures employed 
here (and better detected by the noticers) was of the opposite 
type: an automation cueing “miss”. Thus the quality of deeper 
cue processing showed by the noticers must have applied to 
both cued and uncued items alike, in a way that cannot be 
easily revealed by the current data. However subsequent 
analysis revealed that this differential strategy neither slowed 
nor speeded the overall RT, compared to the non-noticers. 
          The presence of such different strategies may have 
important implications in real-world design and applications. 
The nature and conditions of the task will likely dictate which 
strategy is more appropriate. For instance, under time pressure 
adopting a beta strategy (i.e., trust the cues) may be 
appropriate given that overall allocation performance in the 
automated conditions was good. When time pressure is not 
significant, when a task demands recall for specific target 
details, or when automation is unreliable or imperfect then a d’ 
strategy may be the best strategy. In order for automated 
systems to accrue their intended benefits, users must 
understand how to interact with the system appropriately, an 
end which may be attained through training or feedback 
implementation. 
 Cue Weighting. These analyses suggested that observer’s 
judgments were influenced differentially by differences in unit 
size, distance, terrain, and reliability of information. Both 
objective and subjective measures indicated that unit size 
information had a more significant impact on allocation 
responses than the latter three cues.  The military symbol (or 
numerical digit) for unit size was a highly concrete 
information cue, which may have contributed to the strong 
influence on response patterns. The terrain and distance cues, 
though concrete (physical, geographical) features themselves, 
were found to be less influential perhaps because the use of 
these cues required the observer to integrate information about 
the enemy unit with information regarding the position of 
one’s own unit (hence, increasing mental workload); in the 
case of terrain, further integration was required with the 
contour information. Reliability, in contrast, is a more abstract 
cue than the concrete size, terrain, and distance cues. That is, 
reliability is a probabilistic information cue, which is often 
subject to biases in estimation (Tversky & Kahneman, 1981), 
and not always effectively used in judgments (Wickens 
Gordon and Liu, 1997). The current findings did not suggest 
any difference in cue influence between reliability (abstract 
probabilistic) and terrain and distance (concrete) cues perhaps 



 

 

due to the graphic display of three different levels of 
reliability. This graphic display may have reduced the 
abstractness of the cue, allowing observers to treat it as if it 
were a concrete cue. Subjective measures, however, suggested 
that reliability was less influential in observer’s allocation 
responses. 
 Conclusions. While certain benefits and costs of stage 1 
automation (Parasuraman, et al., 2000) are expressed in this 
research, it is less clearly understood how higher stages of 
automation involving automatic diagnosis will impact 
performance in the battlefield arena, the impact of repeated 
failures on trust and system use, or the impact of a highly 
reliable system (long term) on complacency. The presence of 
different strategies for interacting with early-stage automation 
may also have a significant impact on the design and extent of 
automated systems as well as their task-specific training 
programs, which may bear a direct influence on the type of 
strategy a user will employ. 
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